Х-ЕГЭ
Механические колебания

Колебания – это повторяющиеся во времени изменения состояния системы. Понятие колебаний охватывает очень широкий круг явлений.

Колебания механических систем, или механические колебания – это механическое движение тела или системы тел, которое обладает повторяемостью во времени и происходит в окрестности положения равновесия. Положением равновесия называется такое состояние системы, в котором она может оставаться сколь угодно долго, не испытывая внешних воздействий.

Например, если маятник отклонить и отпустить, то начнутся колебания. Положение равновесия – это положение маятника при отсутствии отклонения. В этом положении маятник, если его не трогать, может пребывать сколь угодно долго. При колебаниях маятник много раз проходит положение равновесия.

Сразу после того, как отклонённый маятник отпустили, он начал двигаться, прошёл положение равновесия, достиг противоположного крайнего положения, на мгновение остановился в нём, двинулся в обратном направлении, снова прошёл положение равновесия и вернулся назад. Совершилось одно полное колебание. Дальше этот процесс будет периодически повторяться.

Амплитуда колебаний тела – это величина его наибольшего отклонения от положения равновесия.

Период колебаний T – это время одного полного колебания. Можно сказать, что за период тело проходит путь в четыре амплитуды.

Частота колебаний \nu – это величина, обратная периоду: \nu =1/T. Частота измеряется в герцах (Гц) и показывает, сколько полных колебаний совершается за одну секунду.

Гармонические колебания.

Будем считать, что положение колеблющегося тела определяется одной-единственной координатой x. Положению равновесия отвечает значение x=0. Основная задача механики в данном случае состоит в нахождении функции x(t) , дающей координату тела в любой момент времени.
Для математического описания колебаний естественно использовать периодические функции. Таких функций много, но две из них – синус и косинус – являются самыми важными. У них много хороших свойств, и они тесно связаны с широким кругом физических явлений.

Поскольку функции синус и косинус получаются друг из друга сдвигом аргумента на \pi /2, можно ограничиться только одной из них. Мы для определённости будем использовать косинус.

Гармонические колебания – это колебания, при которых координата зависит от времени по гармоническому закону:

x=Acos(\omega t+\alpha ) (1)

Выясним смысл входящих в эту формулу величин.

Положительная величина A является наибольшим по модулю значением координаты (так как максимальное значение модуля косинуса равно единице), т. е. наибольшим отклонением от положения равновесия. Поэтому A – амплитуда колебаний.

Аргумент косинуса \omega t+\alpha называется фазой колебаний. Величина \alpha , равная значению фазы при t=0 , называется начальной фазой. Начальная фаза отвечает начальной координате тела: x_{0}=Acos \alpha .

Величина называется \omega циклической частотой. Найдём её связь с периодом колебаний T и частотой \nu. Одному полному колебанию отвечает приращение фазы, равное 2 \pi радиан: \omega T=2 \pi, откуда

\omega = \frac{\displaystyle 2\pi }{\displaystyle T} (2)

\omega =2 \pi \nu (3)

Измеряется циклическая частота в рад/с (радиан в секунду).

В соответствии с выражениями (2) и (3) получаем ещё две формы записи гармонического закона (1):

x=Acos(\frac{\displaystyle 2\pi t }{\displaystyle T}+ \alpha), x=Acos(2 \pi \nu t + \alpha).

График функции (1), выражающей зависимость координаты от времени при гармонических колебаниях, приведён на рис. 1.

Рис. 1. График гармонических колебаний

Гармонический закон вида (1) носит самый общий характер. Он отвечает, например, ситуации, когда с маятником совершили одновременно два начальных действия: отклонили на величину x_{0} и придали ему некоторую начальную скорость. Имеются два важных частных случая, когда одно из этих действий не совершалось.

Пусть маятник отклонили, но начальной скорости не сообщали (отпустили без начальной скорости). Ясно, что в этом случае x_{0}=A, поэтому можно положить \alpha=0. Мы получаем закон косинуса:

x=Acos \omega t.

График гармонических колебаний в этом случае представлен на рис. 2.

Рис. 2. Закон косинуса

Допустим теперь, что маятник не отклоняли, но ударом сообщили ему начальную скорость из положения равновесия. В этом случае x_{0}=0, так что можно положить \alpha =-\pi /2. Получаем закон синуса:

x=Asin \omega t.

График колебаний представлен на рис. 3.

Рис. 3. Закон синуса

Уравнение гармонических колебаний.

Вернёмся к общему гармоническому закону (1). Дифференцируем это равенство:
v_{x}=\dot{x}=-A\omega sin(\omega t+\alpha ). (4)

Теперь дифференцируем полученное равенство (4):

a_{x}=\ddot{x}=-A\omega^{2} cos(\omega t+\alpha ). (5)

Давайте сопоставим выражение (1) для координаты и выражение (5) для проекции ускорения. Мы видим, что проекция ускорения отличается от координаты лишь множителем -\omega^{2}:

a_{x}=-\omega^{2}x. (6)

Это соотношение называется уравнением гармонических колебаний. Его можно переписать и в таком виде:

\ddot{x}+\omega^{2}x=0. (7)

C математической точки зрения уравнение (7) является дифференциальным уравнением. Решениями дифференциальных уравнений служат функции (а не числа, как в обычной алгебре).
Так вот, можно доказать, что:

-решением уравнения (7) является всякая функция вида (1) с произвольными A, \alpha;

-никакая другая функция решением данного уравнения не является.

Иными словами, соотношения (6), (7) описывают гармонические колебания с циклической частотой \omega и только их. Две константы A, \alpha определяются из начальных условий – по начальным значениям координаты и скорости.

Пружинный маятник.

Пружинный маятник – это закреплённый на пружине груз, способный совершать колебания в горизонтальном или вертикальном направлении.
Найдём период малых горизонтальных колебаний пружинного маятника (рис. 4). Колебания будут малыми, если величина деформации пружины много меньше её размеров. При малых деформациях мы можем пользоваться законом Гука. Это приведёт к тому, что колебания окажутся гармоническими.

Трением пренебрегаем. Груз имеет массу m, жёсткость пружины равна k.

Координате x=0отвечает положение равновесия, в котором пружина не деформирована. Следовательно, величина деформации пружины равна модулю координаты груза.

Рис. 4. Пружинный маятник

В горизонтальном направлении на груз действует только сила упругости \vec F со стороны пружины. Второй закон Ньютона для груза в проекции на ось X имеет вид:

ma_{x}=F_{x}. (8)

Простые механизмы
Простые механизмы

Рычаг.

Рычаг – это твёрдое тело, которое может вращаться вокруг неподвижной оси. На рис. 1) изображён рычаг с осью вращения O . К концам рычага (точкам A и B) приложены силы \vec F_{1} и \vec F_{2}. Плечи этих сил равны соответственно l_{1} и l_{2}.

Условие равновесия рычага даётся правилом моментов: F_{1} l_{1}=F_{2} l_{2}, откуда

\frac{\displaystyle F_{\displaystyle 1}}{\displaystyle F_{\displaystyle 2}}=\frac{\displaystyle l_{\displaystyle 2}}{\displaystyle l_{\displaystyle 1}}.

Рис. 1. Рычаг

Из этого соотношения следует, что рычаг даёт выигрыш в силе или в расстоянии (смотря по тому, с какой целью он используется) во столько раз, во сколько большее плечо длиннее меньшего.

Например, чтобы усилием 100 Н поднять груз весом 700 Н, нужно взять рычаг с отношением плеч 7 : 1 и положить груз на короткое плечо. Мы выиграем в силе в 7 раз, но во столько же раз проиграем в расстоянии: конец длинного плеча опишет в 7 раз большую дугу, чем конец короткого плеча (то есть груз).

Примерами рычага, дающего выигрыш в силе, являются лопата, ножницы, плоскогубцы. Весло гребца – это рычаг, дающий выигрыш в расстоянии. А обычные рычажные весы являются равноплечим рычагом, не дающим выигрыша ни в расстоянии, ни в силе (в противном случае их можно использовать для обвешивания покупателей).

Неподвижный блок.

Важной разновидностью рычага является блок – укреплённое в обойме колесо с жёлобом, по которому пропущена верёвка. В большинстве задач верёвка считается невесомой нерастяжимой нитью.

На рис. 2 изображён неподвижный блок, т. е. блок с неподвижной осью вращения (проходящей перпендикулярно плоскости рисунка через точку O ).

На правом конце нити в точке D закреплён груз весом \vec P. Напомним, что вес тела – это сила, с которой тело давит на опору или растягивает подвес. В данном случае вес \vec P прило жен к точке D, в которой груз крепится к нити.

К левому концу нити в точке C приложена сила \vec F.

Плечо силы \vec F равно OA=r, где r – радиус блока. Плечо веса \vec P равно OB=r. Значит, неподвижный блок является равноплечим рычагом и потому не даёт выигрыша ни в силе, ни в расстоянии: во-первых, имеем равенство F=P, а во-вторых, в процессе движении груза и нити перемещение точки C равно перемещению груза.

Зачем же тогда вообще нужен неподвижный блок? Он полезен тем, что позволяет изменить направление усилия. Обычно неподвижный блок используется как часть более сложных механизмов.

Подвижный блок.

На рис. 3 изображён подвижный блок, ось которого перемещается вместе с грузом. Мы тянем за нить с силой \vec F, которая приложена в точке C и направлена вверх. Блок вращается и при этом также движется вверх, поднимая груз, подвешенный на нити OD.

В данный момент времени неподвижной точкой является точка A, и именно вокруг неё поворачивается блок (он бы “перекатывается” через точку A). Говорят ещё, что через точку A проходит мгновенная ось вращения блока (эта ось направлена перпендикулярно плоскости рисунка).

Вес груза \vec P приложен в точке D крепления груза к нити. Плечо силы \vec P равно AO=r.

А вот плечо силы \vec F , с которой мы тянем за нить, оказывается в два раза больше: оно равно AB=2r. Соответственно, условием равновесия груза является равенство F=P/2 (что мы и видим на рис. 3: вектор \vec F в два раза короче вектора \vec P).

Следовательно, подвижный блок даёт выигрыш в силе в два раза. При этом, однако, мы в те же два раза проигрываем в расстоянии: чтобы поднять груз на один метр, точку C придётся переместить на два метра (то есть вытянуть два метра нити).

У блока на рис. 3 есть один недостаток: тянуть нить вверх (за точку C) – не самая лучшая идея. Согласитесь, что гораздо удобнее тянуть за нить вниз! Вот тут-то нас и выручает неподвижный блок.

На рис. 4 изображён подъёмный механизм, который представляет собой комбинацию подвижного блока с неподвижным. К подвижному блоку подвешен груз, а трос дополнительно перекинут через неподвижный блок, что даёт возможность тянуть за трос вниз для подъёма груза вверх. Внешнее усилие на тросе снова обозначено вектором \vec F.

Принципиально данное устройство ничем не отличается от подвижного блока: с его помощью мы также получаем двукратный выигрыш в силе.

Наклонная плоскость.

Как мы знаем, тяжёлую бочку проще вкатить по наклонным мосткам, чем поднимать вертикально. Мостки, таким образом, являются механизмом, который даёт выигрыш в силе.

В механике подобный механизм называется наклонной плоскостью. Наклонная плоскость – это ровная плоская поверхность, расположенная под некоторым углом \alpha  к горизонту. В таком случае коротко говорят: “наклонная плоскость с углом \alpha “.

Найдём силу, которую надо приложить к грузу массы m, чтобы равномерно поднять его по гладкой наклонной плоскости с углом \alpha . Эта сила \vec F, разумеется, направлена вдоль наклонной плоскости (рис. 5).

Выберем ось X так, как показано на рисунке. Поскольку груз движется без ускорения, действующие на него силы уравновешены:

m \vec g+\vec N+\vec F= \vec 0.

Проектируем на ось X:

-mg sin \alpha +F= 0,

откуда

f= mg sin \alpha .

Именно такую силу нужно приложить, что двигать груз вверх по наклонной плоскости.

Чтобы равномерно поднимать тот же груз по вертикали, к нему нужно приложить силу, равную mg. Наклонная плоскость действительно даёт выигрыш в силе, и тем больший, чем меньше угол \alpha .

Широко применяемыми разновидностями наклонной плоскости являются клин и винт.

Золотое правило механики.

Простой механизм может дать выигрыш в силе или в расстоянии, но не может дать выигрыша в работе.

Например, рычаг с отношением плеч 2 : 1 даёт выигрыш в силе в два раза. Чтобы на меньшем плече поднять груз весом P, нужно к большему плечу приложить силу P/2. Но для поднятия груза на высоту h большее плечо придётся опустить на 2h, и совершённая работа будет равна:

A=\frac{\displaystyle P}{\displaystyle 2}\cdot 2h=Ph,

т. е. той же величине, что и без использования рычага.

В случае наклонной плоскости мы выигрываем в силе, так как прикладываем к грузу силу f= mg sin \alpha , меньшую силы тяжести. Однако, чтобы поднять груз на высоту h над начальным положением, нам нужно пройти путь l=h/ sin \alpha  вдоль наклонной плоскости. При этом мы совершаем работу

A=mg sin \alpha \frac{\displaystyle h}{\displaystyle sin \alpha }=mgh,

т. е. ту же самую, что и при вертикальном поднятии груза.

Данные факты служат проявлениями так называемого золотого правила механики.

Золотое правило механики. Ни один из простых механизмов не даёт выигрыша в работе. Во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии, и наоборот.

Золотое правило механики есть не что иное, как простой вариант закона сохранения энергии.

КПД механизма.

На практике приходится различать полезную работу A полезн, которую нужно совершить при помощи механизма в идеальных условиях отсутствия каких-либо потерь, и полную работу Aполн,
которая совершается для тех же целей в реальной ситуации.

Полная работа равна сумме:
-полезной работы;
-работы, совершённой против сил трения в различных частях механизма;
-работы, совершённой по перемещению составных элементов механизма.

Так, при подъёме груза рычагом приходится вдобавок совершать работу по преодолению силы трения в оси рычага и по перемещению самого рычага, имеющего некоторый вес.

Полная работа всегда больше полезной. Отношение полезной работы к полной называется коэффициентом полезного действия (КПД) механизма:

\eta=Aполезн/Аполн.

КПД принято выражать в процентах. КПД реальных механизмов всегда меньше 100%.

Вычислим КПД наклонной плоскости с углом \alpha  при наличии трения. Коэффициент трения между поверхностью наклонной плоскости и грузом равен \mu.

Пусть груз массы m  равномерно поднимается вдоль наклонной плоскости под действием силы \vec F из точки P  в точку Q  на высоту h  (рис. 6). В направлении, противоположном перемещению, на груз действует сила трения скольжения \vec f.

Ускорения нет, поэтому силы, действующие на груз, уравновешены:

m \vec g+\vec N+\vec F+\vec f= \vec 0.

Проектируем на ось X:

-mg sin \alpha +F-f=0. (1)

Проектируем на ось Y:

-mg cos \alpha +N=0. (2)

Кроме того,

f= \mu N, (3)

Из (2) имеем:

N=mg cos \alpha .

Тогда из (3):

f= \mu mg cos \alpha .

Подставляя это в (1), получаем:

F= mg sin \alpha +f=mg sin \alpha+ \mu mg cos \alpha=mg(sin \alpha+cos \alpha) .

Полная работа равна произведению силы F на путь, пройденный телом вдоль поверхности наклонной плоскости:

Aполн=F \cdot PQ==mg(sin \alpha+cos \alpha) \frac{\displaystyle h}{\displaystyle sin \alpha}= mgh(1+ \mu ctg \alpha).

Полезная работа, очевидно, равна:

Аполезн=mgh.

Для искомого КПД получаем:

\eta =\frac{\displaystyle mgh}{\displaystyle mgh(1+ \mu ctg \alpha)}=\frac{\displaystyle 1}{\displaystyle \mu ctg \alpha}.